1.150C摩托车加多少机油才合适?

2.四冲程汽油机工作原理。

3.A-4攻击机的发展沿革

4.赛车的方程式

5.宝马320I 是前去后驱

950汽油机油箱尺寸_950汽油机油箱尺寸多大

额定参数

额定容量:5至1600KA

高压:11/10.5/10/6.3KV

低压:0.4KV

阻抗电压:4/4.5%

尺寸规格:(长X宽X高)1250X650X950(MM),重量345KG。

扩展资料

性能特点

1、S11变压器与S9变压器相比,空载损耗平均降低约30%。

2、容量在630~2500kVA壳围内的低压绕组用筒式或螺旋式结构,机械强度高,安匝分布平衡,产品的抗短路能力好。

3、器身追加了定位结构,使之在运输过程中不产生位移,同时所有紧固件加装扣紧螺母,确保产品在长期运行过程中紧固件不松动,满足了不吊芯的要求。

4、变压器用波纹油箱,取消了储油柜,箱盖与箱沿完全焊死或用螺栓紧固,延长了变压器油的使用寿命。

5、产品表面经去油、去锈、磷化处理后喷涂底漆、面漆,可以满足冶金、石化系统及潮湿污秽地区的特殊使用要求。

6、精选组件,用了全密封变压器油箱,按标准要求安装有压力释放阀、信号温度计、气体继电器等,确保变压器安全运行。该系列产品外形美观,体积小,能减少安装占地面积,是理想的免维护优质产品。

百度百科-S11变压器

百度百科-S11电力变压器

150C摩托车加多少机油才合适?

赛车名称:雷诺R25(Renault R25)

轮胎:米其林(Michelin)

底盘:碳纤维单体结构及铝制蜂窝合成材料/雷诺F1车队。

前悬挂系统:上下叉骨,内置式摇杆,与扭杆和减震器相连。

后悬挂系统:上下叉骨,纵置扭杆,横置减震器,位于变速箱顶部,底部叉骨与V型龙骨相连。

变速箱:6档(1倒档)半自动变速箱

燃料系统:带凯夫拉尔纤维橡胶油箱,位于驾驶舱后部。

冷却系统:独立水油冷却系统,散热片位于侧进气口。

电子系统:整合底盘/引擎电子系统,软件由雷诺F1车队和马格内蒂-马莱利(Magneti Marelli)共同开发。

刹车系统:碳纤维刹车碟(希科/Hitco)、碳纤维离合器(AP)。

驾驶舱:碳合成结构、6点锁紧安全带。

车身尺寸:

前轮距:1450毫米

后轮距:1400毫米

轮轴距:3100毫米

赛车总长度:4800毫米

赛车总高度:950毫米

赛车总宽度:1800毫米

赛车总重量:605千克(包括车手、摄像机、压舱物)

引擎/雷诺:

型号:雷诺F1 RS25

夹角:72度

稳定性:超过1400公里

排气量:3升

气缸数:自然进气,V10。 赛车名称:雷诺R24(Renault R24)

轮胎:米其林(Michelin)

(其它技术参数至今未公布) 赛车名称:雷诺R23(Renault R23)

轮胎:米其林(Michelin)

底盘:碳纤维及铝制蜂窝合成材料。

发动机:自然进气V10,40气门,宽V角。

挡位:6前进挡,1后退挡。

悬挂系统:前碳纤维双叉骨,钛合金舱内摇杆;前钛合金双叉骨。

刹车系统:碳纤维碟盘,AP刹车。

车长:4600毫米

车宽:1800毫米

车高:950毫米

轮距:前1450毫米;后1400毫米;轴距3100毫米。

四冲程汽油机工作原理。

150C摩托车贴着加1.3L的话,我建议你不要超过1.3L,最多加1L价差不多了,加多了容易漏而且机器也和人一样过多不易。

扩展资料:

机油,即发动机润滑油,英文名称:Engine oil。

密度约为0.91×10?(kg/m?)能对发动机起到润滑减磨、冷却降温、密封防漏、防锈防蚀、减震缓冲等作用。被誉为汽车的“血液”。

机油由基础油和添加剂两部分组成。

基础油是润滑油的主要成分,决定着润滑油的基本性质,添加剂则可弥补和改善基础油性能方面的不足,赋予某些新的性能,是润滑油的重要组成部分。

参考网址:机油-百度百科

A-4攻击机的发展沿革

我们以单缸汽油发动机为例,讲解一下汽油机的工作原理。

气缸内装有活塞,活塞通过活塞销、连杆与曲轴相连接。活塞在气缸内做往复运动,通过连杆推动曲轴转动。为了吸入新鲜气体和排出废气,设有进气门和排气门。

活塞顶离曲轴中心最远处,即活塞最高位置,称为上止点。活塞顶部离曲轴中心最近处,即活塞最低位置,称为下止点。上、下止点间的距离称为活塞行程,曲轴与连杆下端的连接中心至曲轴中心的距离称为曲轴半径。活塞每走一个行程相应于曲轴转角180°。对于气缸中心线通过曲轴中心线的发动机,活塞行程等于曲柄半径的两倍。

活塞从上止点到下止点所扫过的容积称为发动机的工作容积或发动机排量,用符号VL表示。

四冲程发动机的工作循环包括四个活塞行程,既进气行程、压缩行程、膨胀行程(作功行程)和排气行程。

进气行程

化油器式汽油机将空气与燃料先在气缸外部的化油器中进行混合,然后再吸入气缸。进气行程中,进气门打开,排气门关闭。随着活塞从上止点向下止点移动,活塞上方的气缸容积增大,从而气缸内的压力降低到大气压力以下,即在气缸内造成真空吸力。这样,可燃混合气便经进气管道和进气门被吸入气缸。

压缩行程

为使吸入气缸内可燃混合气能迅速燃烧,以产生较大的压力,从而使发动机发出较大功率,必须在燃烧前将可燃混合气压缩,使其容积缩小、密度加大、温度升高,即需要有压缩过程。在这个过程中,进、排气门全部关闭,曲轴推动活塞由下止点向上止点移动一个行程称为压缩行程。

压缩终了时,活塞到达上止点,活塞上方形成很小空间,称为燃烧室。压缩前气缸中气体的最大容积与压缩后的最小容积之比称为压缩比,以ε表示:

压缩比愈大,在压缩终了时混合气的压力和温度便愈高,,燃烧速度也愈快,因而发动机发出的功率愈大,经济性愈好。但压缩比过大时,不仅不能进一步改善燃烧情况,反而会出现爆燃和表面点火等不正常燃烧现象。爆燃是由于气体压力和温度过高,在燃烧室内离点燃中心较远处的末端可燃混合气自燃造成的一种不正常燃烧。爆燃时火焰以极高的速率向外传播,甚至在气体来不及膨胀的情况下,温度和压力急剧升高。同时,还会引起发动机过热,功率下降,燃油消耗量增加等一系列不良后果。表面点火是由于燃烧室内炽热表面与炽热处(如排气门头,火花塞电极,积炭处)点燃混合气产生的另一种不正常燃烧(也称为炽热点火或早燃)。表面点火发生时,也伴有强烈的敲击声(较沉闷),产生的高压会使发动机件负荷增加,寿命降低。

作功行程

在这个行程中,进、排气门仍旧关闭。当活塞接近上止点时,装在气缸盖上的火花塞即发出电火花,点燃被压缩的可燃混合气。可燃混合气被燃烧后,放出大量的热能,因此,燃气的压力和温度迅速增加,所能达到的最高压力约为3-5Mpa,相应的温度则为2200-2800K。高温高压的燃气推动活塞从上止点向下止点运动,通过连杆使曲轴旋转并输出机械能,除了用于维持发动机本身继续运转而外,其余即用于对外作功。

排气行程

可燃混合气燃烧后生成的废气,必须从气缸中排除,以便进行下一个进气行程。

当膨胀接近终了时,排气门开启,靠废气的压力进行自由排气,活塞到达下止点后再向上止点移动时,继续将废气强制排到大气中。活塞到上止点附近时,排气行程结束。在排气行程中气缸内压力稍高于大气压力,约为0.105-0.115Mpa。排气终了时,废气温度约为900-1200K。

由于燃烧室占有一定容积,因此在排气终了时,不可能将废气排尽,留下的这一部分废气称为残余废气。

综上所述,四冲程汽油发动机经过进气、压缩、燃烧作功、排气四个行程,完成一个工作循环。这期间活塞在上、下止点间往复移动了四个行程,相应地曲轴旋转了两周。

赛车的方程式

在面对同时代战斗机不断上涨的重量趋势(如美国空军的 F-86 和海军 F9F),道格拉斯的首席设计师爱德华.海尼曼博士(Edward Henry Heinemann)

成立了一个团队用公司投资研究是否能扭转这一趋势,减重在降低成本与提高性能上的好处是不言而喻的。他们提出一种十分大胆的仅 7,000 磅重的喷气式战斗机,1952年1月将初步研究成果提交给了海军航空署。

海军表现出了些许兴趣,但是手头已经有了好几个战斗机项目,于是建议道格拉斯将同样的设计思想用于研制一种舰载攻击机上去,该机要能投掷核弹,最大速度 500 英里/小时,作战半径 345 英里,2,000 磅武器挂载能力,最大总重低于 30,000 磅。

两周后海尼曼团队就完成了研究,并且性能指标大大超过了海军的要求,飞机全重仅 12,000 磅,连海军规定的上限一半都不到,最大速度也超出 100 英里/小时,作战半径超出 115 英里。道格拉斯被授权进行进一步的研究,在此期间增加了航程要求,全重也相应提高到 14,000 磅。

新飞机是下单翼布局,机翼为修形三角翼,四分之一弦长处后掠角 33 度,翼展仅 27 英尺 6 英寸,所以就免去了机翼折叠机构,节省了不少重量并简化了结构。机翼有三根一体式翼梁,并沿顺翼展方向铺设强化蒙皮。三角翼内部形成一个单体盒状结构,并安装有内部油箱。机翼前缘有自动伸展的缝翼

,后缘有开裂式襟翼,翼梁之间的空间大部分被 560 加仑的内部油箱所占据。

飞机安装有常规倒 T 形尾翼,平尾可以电动调整安装角,以便在飞行中调整配平。后机身两侧各安装有一片大型减速板。

发动机是按许可证制造的英国阿姆斯壮.西德利蓝宝石涡喷(Armstrong Siddeley Shire),额定静态推力 8,000 磅,将由莱特公司制造,美军编号 J65。发动机安装在机身中间位置,座舱两侧进气,进气口位置较高,发动机后有长长的尾喷管道。

机内油箱总容量 770 加仑,包括机翼油箱以及座舱后和进气道之间的机身自封油箱。所有外部武器在机腹和机翼的三个点上。内部武器是两侧翼根处的两门 20mm 航炮。包括一枚 MK 12 核弹在内的设计全重是 14,250 磅,此时依靠内部油量作战半径仅 400 英里。

长长的主起落架固定在机翼后缘内侧,主起落架向前收起,同时机轮旋转 90 度纳入机翼起落架舱,由于机翼较薄,所以形成了横贯整个翼根弦长的主起落架整流鼓包,前起落架向前收入机鼻下方。之所以把起落架都设计成向前收起,是因为起落架解锁后,在气流的阻力下可以自动伸展到位,省去了起落架应急放下装置。起落架长而纤细,提供了起飞时足够的离地净高。

座舱盖为蛤壳状,通过铰链向后打开。座舱内配备了弹射座椅。 1952 年 2 月道格拉斯通过了初步全尺寸模型的审核,同年 6 月 12 日获得制造一架原型机的合同。军方型号 XA4D-1,BuNo137812,原型机的资金来源于已经取消的 A2D“天鲨”。1952 年 10 月通过了最终全尺寸模型审核,这时海军已经定购了 9架 生产型飞机,很快又将增加到 19 架。

XA4D-1在道格拉斯加州埃尔塞贡多(El Segundo)工厂组装,1954 年 2 月下线。这架飞机立即获得一个绰号“天鹰”,还有人戏称其为“海尼曼的改装老爷车”。原型机安装了无框风挡,机鼻前方是长长的试飞空速管,为试飞员准备了 NAMC II 型弹射座椅。原型机仅安装了机腹挂架,没有着舰钩和机炮。

XA4D-1 随后被运到 100 英里之外的爱德华兹空军基地,由于 7,200 磅推力的莱特 J65-W-2 涡喷发动机的延迟交付,首飞推迟到了 1954 年 6 月 22 日,试飞员是罗伯特.拉恩(Robert Rahn)。

在 XA4D-1 随后的试飞中,逐步加上了生产型 A4D-1 上的许多装备,如尾钩、尾喷管整流,机翼涡流发生器,和全部三个架。 A-4A

A4D-1 是天鹰的首个生产型,后改称A-4A。首机(BuNo137813)在 1954 年 8 月 14 日首飞,此时仅仅距原型机首飞才两个月。道格拉斯一共生产了 165 架 A4D-1,最后一架在 1957 年交付。

A4D-1 几乎与 XA4D-1 一样,但是尾喷管做了称为“糖匙”的整流修形,并安装了着舰钩,和所有的三个武器挂架:一个在机腹中线,另两个在机翼起落架整流包外侧。三个挂架公可挂载超过 5,000 磅的武器,2300千克攻击武器(含950千克重的战术核、常规、、小斗犬空对地导弹、火箭发射巢、Mk.11型机炮吊舱、鱼雷或水雷等);也可以挂 3 个副油箱,总容积 800 加仑,此时总携油量5950升。

紧挨着座舱后的机背上安装了 UHF 无线电大型刀形天线。有框风挡取代了原型机的无框风挡。内部武器为每侧处的两门柯尔特 20mm 航炮,每门备单 100 发。作为攻击机,A4D-1 没有装雷达,鼻锥内塞满了航电。发动机是 7,700 磅静态推力的莱特 J65-W-4 或者-4B。

1955 年 10 月 15 日,戈登.格雷(Gordon Gray)上尉驾驶 A4D-1 BuNo137820创造了 100 公里闭合航线的速度纪录——695.163 英里/小时。该纪录之前是由美国空军 F-86H 创造的,这也是第一次由攻击机破此纪录。   1957 年 1 月第一架 A4D-1 加入了 VA-72 攻击机中队。VA-93 则是西海岸第一个接收 A4D-1 的中队,1957 年 9 月部署在提康德罗加(Ticonderoga,CVA-14)号航母巡弋西太平洋。1957 年 1 月海军陆战队的 VMA-224 成为首个接收天鹰的陆战队单位。  

1962 年 9 月的大改名运动中 A4D-1 型号改为 A-4A。有趣的是越战时期,一部分 A-4A 的型号又改为 TA-4A。其中有两个原因,一时新型号的天鹰性能大大超过 A-4A,所以后者被考虑用于训练任务;二是出于政治因素,改名教练机型号后可以减少帐面上在越南部署的攻击机数量,减少舆论压力。

A-4B

A4D-2 是天鹰的第二个生产型,加强了后机身结构强度。其他改进之处还包括引入单层方向舵,新方向舵用了粘接工艺,将薄板与加强肋按三明治结构胶粘而成,取消了铆钉,并增加了调整片。新结构的方向舵解决了 A4D-1 在高速下方向舵抖振的问题,该抖振会导致机体后部结构疲劳。A4D-2 外部最引人注目的改动就是在右侧机身增加了不可收放的空中受油管,机腹中线挂架具备了挂载 300 加仑“伙伴”空中加油吊舱的能力,该吊舱尾部容纳了绞盘和锥套,使得天鹰具备了空中加油与受油能力。

A4D-2 的航电中增加了导航设备,火控系统增加了发射“小斗牛犬”无线电遥控空地导弹的能力,飞控系统经过升级,并且还增强了起落架支柱并增加了燃油增压系统。

A4D-2 为飞行员配备了 Escapac 1 火箭弹射座椅。

首架 A4D-2 在 1957 年 9 月交付,陆战队的 VMA-211 是第一个装备这种飞机的中队。道格拉斯共生产了 542 架 A4D-2。1962 年 9 月 A4D-2 型号改为A-4B。

改装推力3500千克的J65—W—4型喷气发动机,改装双重液压控制系统,一点式加油口、空中加油杆、新式仪表板并加强了后机身,从1957年开始,A型停产,全部改产B型。

 

A-4C

所有早期型天鹰都是昼间攻击机,不具备在恶劣气候和夜间作战的能力。于是诞生了具备全天候作战能力的 A4D-2N。

机鼻加长了 9 英寸用于安装了 AN/APG-53A 防撞雷达。除此之外航电中还增加了一个攻角指示器和低空轰炸系统、以及自动驾驶仪、全飞行姿态指示器。风挡增加了雨刷,并调整了座舱的布置。弹射座椅也升级为改进型的 Escapac 1A-1 低空弹射座椅。A4D-2N 一开始安装的是 7,000 磅静推力的 J65-W-16A,后来换成了 8,400 磅静推力的 J65-W-20。

1958 年 8 月 21 日 A4D-2N 首飞,1960 年 2月 陆战队 VMA-255 中队的 A4D-2N 初步形成作战能力。道格拉斯共生产了 638 架 A4D-2N。1962 年 9 月仍在生产中的 A4D-2N 型号改为 A-4C。总重增至7850千克,是60年代美国海军及海军陆战队的主力攻击机。

A-4E

A4D-5 是天鹰的重大改型,换装了 8,500 磅推力的普惠 J52-P-6A 发动机。J52 与早期天鹰使用的 J65 发动机相比,燃油消耗量降低了 27%,显著提高了航程。由于更换了发动机,需要重新设计天鹰的机身中段和进气道,并在进气口增加了附面层分离导板。

早期天鹰的主要任务是投掷核弹,而 A4D-5 更突出了常规武器的投送能力,于是在机翼外侧增加了一对挂架,从而使总挂载量增加到了 8,200 磅,配置更加灵活。A4D-5 的机鼻增长 14 英寸以容纳 AN/ASN-19A 导航计算机,航电中还新增了塔康导航、多普勒导弹、MK 9 甩投轰炸系统、无线电高度表和 AJB-3A 低空轰炸系统。

1959 年 7 月 30 日海军批准了将两架 A4D-2N(148613/148614)改装为 A4D-5 原型机的合同,首机 1961 年 7 月 12 日首飞。1962 年 9 月 A4D-5 型号改为 A-4E(由于会与天鹰的老型号 A4D 混淆,所以直接跳过了 A-4D)。1962 年 A-4E 开始服役,加州勒莫尔(Lemoore)航空站的 VA-23 在 62 年 12 月接受第一架 A-4E。道格拉斯共生产 500 架 A-4E。

在服役期间,A-4E 经过升级安装了 A-4F 的“驼峰”电子设备舱,其中一些飞机还换装了推力更大的 J52-P-8 发动机,9,300 磅静态推力。还有部分 A-4E 的老式空中加油杆升级成了 A-4M 的新式斜弯杆。

13 年 10 月为了补充赎罪日战争中以色列损失惨重的天鹰中队,美国紧急援助以色列 28 架 A-4E。

A-4F

A-4F 是美国海军的最后一型天鹰(不包括陆战队的 A-4M),也是第一种只以 1962 年 9 月新命名规则命名的天鹰。

1965 年海军订购 A-4F 以弥补海军和陆战队天鹰单位在越南的损失。A-4F 是 A-4E 的改进型,改进之处包括鼻轮转向机构、机翼上表面扰流板(为了增加横风降落性能)、Escapac 1C-3 弹射座椅、9,300 磅静态推力的普惠 J52-P-8A 发动机。最后一架 A-4E(BuNo152101)被改装成为 A-4F 原型机,1966 年 8 月 31 日首飞。VA-23 和 VA-93 是首批接收 F 型的单位,随即在 1967 年末被派驻东南亚。道格拉斯共生产了 147 架 A-4F。

TA-4E/F

在天鹰项目初始,道格拉斯就建议海军多装备些天鹰的双座型。双座型用途很广,既可以作为教练机,又可以作为作战飞机,而且在作战时后座飞行员可以担任武器官,提高作战效率。出于预算考虑并没有纳这个建议,但是在 1964 年海军转变了态度并说服国防部出资购买两架双座型天鹰原型机。其中海军最具说服力的一点就是装备更具效用的双座型之后可以将美国境内用于训练的单座型解放出来扔到越南去。

海军修改了 A-4E 的购买合同,将最后两架 A-4E(BuNo152102 和 152103)修改成为 TA-4E 双座型原型机。TA-4E 保留了单座型的发动机、军械和大部分机体结构,前机身加长 28 英寸以容纳第二个座舱,后座座椅增高以改善视界。前后座舱共用一块向后打开的蛤壳式座舱盖,并配备了复式操纵机构、Escapac 1C-3 零-零火箭弹射座椅。机翼后缘襟翼上安装了向上打开的扰流板,这是为了增加横风状态下的降落性能。前轮增加了转向机构,在横风起降时具有更好的操控性,并且在航母甲板作业时机动性也更好。TA-4E 的发动机是 9,300 磅推力的普惠 J52-P-8A。

TA-4E BuNo152102 在 1965 年 6 月 30 日首飞,因为 TA-4E 在 A-4E 的基础上改动颇大,基本配置已经与 A-4F 相同,所以不久后型号改为 TA-4F,TA-4F 保留了单座型的所有作战能力,在使用上更加灵活。

1966 年 5 月 TA-4F 首先进入加州 Lemoore 航空站的 VA-125 中队服役,该中队是 A-4 战备航空大队。道格拉斯共生产了 241 架TA-4F,其中包括两架 A-4E 改装的原型机。TA-4F 装备了海军和陆战队的一线单位,多数天鹰中队都配备了一到两架双座型。

OA-4M

陆战队也将 TA-4F 作为前进空中控制机,在越南战场帮助陆战队飞机和飞行员识别和准确轰炸地面目标。陆战队的 23 架这种飞机后来升级成为 OA-4M。  

 

EA-4F  

4 架TA-4F 被改装为 EA-4F 电子战教练机,这些飞机可以挂载用于模拟苏联导弹和飞机电子信号的特殊。这些飞机装备给了 VAQ-33。

 

TA-4J

TA-4J 就是用于取代格鲁曼 TF-9J“美洲狮”的高教机。由于 TA-4F 的表现颇佳,1968 年海军决定购 TA-4J 作为下一代海军和陆战队高级教练机。

TA-4J 在结构上与 TA-4F 基本一致,但是去掉了许多战术武器系统,不能挂载“伙伴”加油吊舱,但保留了空中加油杆。TA-4J 还去掉了机翼外侧的两个挂架,挂架总数降至 3个。上述改动直接使空重降低了 230 磅,发动机也改为降低推力的 J52-P-6,8,500 磅静态推力。TA-4J 保留了翼根两门 20mm 航炮,不过在实际使用中部队还是往往拆掉航炮。

TA-4J 被施以传统的红白相间的教练机涂装,与海军的其他灰色涂装的天鹰形成鲜明对比。TA-4J 在 1968 年 12 月1 7 日首飞。1969 年中期首先进入 VT-21 训练中队服役。TA-4J 的主要任务是培训海军舰载机飞行员,并不担负作战任务。道格拉斯共生产 226 架TA-4J,一些 TA-4F 双座机通过取消武器挂载能力也被改装为 TA-4J,还有一些 TA-4J 被用于支援性任务,如扮演想敌机。

 

A-4L

有 100 架航母舰载中队的 A4D-2N (A-4C)被翻新成 A-4L 以填补海军和陆战队后备单位的装备缺口。一些海军和陆战队过剩的 A-4C 和 A-4L 出售给了阿根廷、新加坡和马来西亚。A-4C 升级至 A-4L 的目的是将这 100 架飞机升级至后期型天鹰标准,期望能凑满两个具备完全作战能力的后备航母舰载联队。

升级包括换装起飞推力 8,400 磅的 J65-W-20 发动机,安装机背“驼峰”电子设备舱。一开始的升级工作由道格拉斯完成,后来改为道格拉斯提供改装套件,由海军维修站完成。套件中还包括 TA-4F 上首次用的机翼涡流发生器,但是 A-4L 的武器挂架仍然是 3 个。

首架 A-4L 在 1969 年 8 月 21 日首飞,当年 12 月开始交付后备单位。后来过剩的 A-4L 改装成 A-4PTM 被卖给了马来西亚。

A-4M

A-4M 是专门为美国海军陆战队的需求而研制的。陆战队需要一种可以从前线简易机场起飞执行近距支援任务的攻击机,而且没有看中沃特的 A-7。

A-4M 的发动机是J52 家族中的新型号 J52-P-408,推力 11,200 磅,比早期的 J52-P-8A 增加了 20%,增加的推力显著提高了飞机的短距起飞能力。新发动机重量仅增加 1%,耗油量也没有增加。另外 P-408 的无烟燃烧室减少排气的可视特征。另外 P-408 还增加了发动机自启动机,而且发电机容量增加了 60%。

A-4M 外观上最显著的改动就是重新设计了座舱盖,以改善视野。新座舱盖增宽了 3 英寸,一改早期天鹰的经典道格拉斯式半幅座舱盖,后者毫无后方视野可言。为了配合加宽的舱盖,还用了类似于教练型的大风挡。A-4M 机尾下方增加了类似于A-4K的减速伞舱,容纳一个带状减速伞。在飞机接地后释放出减速伞有助于缩短降落距离,以便在简易机场使用。

A-4M 安装了改进过的空中加油管,不再是直的,二是在机鼻部位向右舷斜弯以避免干扰机头的广视角目标捕获系统。垂尾的顶部增加了 IFF 天线。

1969 年 5 月 A-4M 项目开始启动。两架 A-4F(BuNo155042 和 155049)被改装成 A-4M的 原型机。首架飞机在 10 年 4 月 10 日首飞,试飞员沃特.史密斯(Walt Smith)。

道格拉斯称 A-4M 为天鹰 II,但这并不是军方的正式绰号,仅仅是商业上的宣传。11 年 2 月 26 日 A-4M 开始向海军交付,南卡莱罗纳州波弗特(Beaufort)陆战队航空站的 VMA-324 是首个接收 A-4M 的单位。到 16 年,所有 5 个陆战队现役轻型攻击机中队都装备了 A-4M。

在 A-4M 长达十年的生产历程中,也持续进行重大改进。其中包括整合有 Elliott HUD 的改进型武器显示和投放系统,可显示空空与空地模式。具有电视和激光双重跟踪模式的休斯角度/速度轰炸系统,该系统的寻的头安装在机鼻最前方,里面有一具电视摄像机和一个激光斑点追踪系统,可以捕获并追踪被激光照射的目标。在机鼻的众多传感器中还有 ALR-45 雷达告警系统的天线,ALR-45 的另一个天线就安装在垂尾顶部的盒子里。机鼻下方是 ALQ-126 欺骗干扰收发机的天线。经过这么多改进之后海军一度想将 A-4M 的型号改为 A-4Y,但未果。

道格拉斯共生产了 160 架 A-4M(包括两家 A-4F 改装的原型机),最后一架 A-4M 在 19 年 2 月 27 日交付,这也标志这天鹰的最终停产,同时创造了美国战术飞机生产时间的纪录——27 年。

A-4M 在陆战队现役中队中一直服役到 1990 年 2 月 27 日,当天 VMA-211 将最后一架 A-4M 移交给 M-42,后者是加州阿拉梅达(Alameda)航空站的后备单位。这也标志着天鹰作为攻击机在海军和陆战队现役单位服役历史的结束。A-4M 在后备单位一直服役到 1994 年,随着 VMA-131 的 A-4M 退役,宣告海军和陆战队的天鹰攻击型已全部退役,在此之后只有双座教练型天鹰继续留在海军和陆战队。 天鹰持续生产了 27 年,总生产数量2966架,中 555 架是双座型。天鹰的主要客户是美国海军和陆战队,外国客户中有四个国家购买了道格拉斯生产的全新天鹰,另有四国购买的是美军二手机。

1967 年 12 月初,天鹰开始从海军舰载攻击机中队退役,被 A-7 海盗 II 和 A-6 入侵者取代。15 年末随着最后一艘埃塞克斯级航母的退役,最后一个 A-4F 舰载中队也遭到解散。单座 A-4 在海军后备单位还继续服役了一段时间,直到 18 年被 A-7 取代,想敌单位的单座 A-4 一直服役到 1980 年代中期。

海军的双座型天鹰在训练中队服役了更长的时间,1990 年代逐渐被 T-45 苍鹰所取代。1999 年 10 月 20 日,最后一架 TA-4J 退役。双座型也在 VF-45、VF-126、VA-127 和战斗机武器学校以及 VAQ-33 电子战入侵者中队扮演想敌机。天鹰还在几个混成中队中担负各种各样的任务,如在 VC-8 担负想敌和拖靶任务。

宝马320I 是前去后驱

这是汽车场地比赛的一种。赛车必须依照国际汽车联合会制定颁发的车辆技术规则规定的程式制造,包括车体结构、长度和宽度、最低重量、发动机工作容积、汽缸数量、油箱容量、电子设备、轮胎的距离和大小等。

各级方程式赛车的制造程式不同。属于方程式汽车比赛的项目有:F1、 F-3000、 F-3、亚洲方程式、无限方程式、福特方程式、雷诺方程式、卡丁车方程式等。

一级方程式赛车(F1/Formula 1)

格兰披治一级方程式(Grand Prix Formula One 简称:F1)大奖赛是目前世界上速度最快的、费用最昂贵、技术最高的比赛, 也是方程式汽车赛中最高级别的比赛。世界上首次举行赛车场上的赛车是1900年在法国的默伦。现代世界一级方程式锦标赛是于1950年在英国银石赛车场开始的, 现在每年举行18场比赛,04年中国上海参加了,由国际汽车联合会安排比赛。

其最初的定义为“一种至少有四个不在一条线上的轮子的车辆,其中至少有两个轮子用于转向,至少有两个轮子用于驱动”。更为具体的定义则是指气缸容积3.5公升,约600马力,最高时速315公里的方程式赛车。这里的“方程式”取一定格式的含义,即严格规定赛车的重量、长、宽、轮胎的距离及大小等。在所有的方程式赛车中,一级方程式赛车是级别最高级的。

所谓“方程式”赛车是按照国际汽车运动联合会(FIA)规定标准制造的赛车。这些标准对“方程式”赛车的车长、车宽、车重、发动机的功率、排量、是否用增压器以及轮胎的尺寸等技术参数都作了严格的规定。 F1大赛的统筹工作,均由FIA安排。他们负责制订车赛的规则,拟定比赛时间表和选择赛车的场地等。

FIA要求F1赛车用排量为3L、12缸以下、不加增压器的自然吸气式发动机。F1赛车的底盘用碳化纤维制造,重量很轻,很坚固。车赛的底盘很低,最小离地间隙仅有50-70毫米。与普通的汽车相比,F1赛车有许多独特的地方,它的车身细而长,车身高度很低,宽大的车轮极为显眼,而且是完全暴露的,即所谓“开式车轮”(Open Wheel)。

每辆F1赛车都是世界著名汽车厂家的精心杰作。一辆这种赛车的价值超过七百万美元,甚至不亚于一架小型飞机的价值。F1汽车大赛,不仅是赛车手勇气、驾驶技术和智慧的竞争,在其背后还进行着各大汽车公司之间科学技术的竞争。福特汽车公司就形象地把汽车大赛比作“高科技奥运会”。在汽车大赛中推出的新型赛车,从设计到制造都凝聚着众多研制者的心血,并代表着一家公司乃至一个国家的高科技最新水平。汽车大赛还是各国科技人才素质的较量。据悉,德国约有2000多名专业人才直接从事赛车的设计、制造和研究工作、美国约有1万人;而日本则最多,估计近2万人左右。

所有参加F1大赛的车手,都是经过千挑万选的世界车坛的精英。每一位车手在跻身F1大赛前,都必须经过多个级次的选拔,例如小型车赛、方程式(F3)车赛等等,堪称过五关、斩六将,而要成为世界冠军,更非易事。他必须身经百战,集赛车技术、天赋及斗志于一身。

根据FIA的有关规定,每年全世界能有资格驾驶世界F1赛车的车手不超过100名。所有驾驶F1赛车的选手,都必须持有FIA签发的“超级驾驶执照”;每年只有少数的优秀车手有资格参加决赛。

F1大赛每年都要选择地理条件迥然不同的16个赛场。有的选在高原上,那里空气稀薄,用以考验车手的身体素质;有的则是街道串成的赛道,那里路面相对狭窄曲折,车手弄不好就会撞车;有的赛车场就显得路面宽阔,但也有上下坡考验车手的技术;还有的赛车场建在树木葱郁的森林中,那里跑道起伏大,车手很难控制赛车。由于赛车经常出现意外,FISA要求所有主办国的赛车场必须有足够的草地缓冲区。各赛场的救护人员也必须分布在全场的每一个角落,争取在出事的一刹那,跑进现场,进行抢救。

每一赛车都需在车赛前三天进行试车,然后根据试车圈速排列起跑位次。通常在试车的时候,共有28-30辆赛车参加计时,但最终只取前26辆赛车参加比赛。正式比赛开始,各车手按排位从相继不远的起跑位置出发。进入前6名可得分。第一名是10分,第二名是6分,第三到第六分别是4到1分。

F1底盘简介

在普通的汽车教科书中,关于车辆的底盘是这样定义的。底盘是用于支承、安装发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶的整体。它由传动机构、行驶机构、转向机构和制动机构四部分组成。也就是说除了引擎、轮胎和车身外壳,几乎全部被纳入底盘的范畴。

既然是对所有车辆的广泛定义,那么也同样适用于F1赛车;但是在F1中,我们通常所说的底盘主要指单体壳和传动行驶机构,在2006版F1技术规则中,对底盘的参数做了严格的定义和限制,详细细节请见F1底盘规则。

根据国际汽联运动第20条规定,车队冠军(制造商冠军)只颁发给底盘制造商。这足见底盘制造在F1中的重要地位,一支F1车队可以使用购买的引擎和轮胎,但是要成为合法的注册车队,必须具备自己生产制造底盘的能力。F1现役的车队总共有11支,也就意味着有11支底盘制造商,分别是:雷诺、迈凯轮、法拉利、丰田、本田、宝马-索伯、威廉姆斯、红牛、红牛二队、米德兰和超级亚久里。

F1底盘规则

F1技术规则关于底盘的限制主要包含:制造材料、尺寸定义和安全测试指标。其中制造材料统一用碳纤维复合材料,而在后两方面的限制则较为具体,下面我们将分开阐述。

一,尺寸限制

F1技术规则要求,车身总宽最大不得超过1800毫米,长度不设限制;车身总高(不含摄像头)不得超过950毫米,左右轮中心线之间的宽度不得超过1400毫米。尾翼总宽度不得超过1米。前轮轴心到前翼最前沿的距离不得超过1200毫米,后轮轴线到尾翼最后沿不得大于500毫米,尾翼总高度不得超过800毫米。

二,安全测试,

安全测试主要针对驾驶仓以及车头和车尾,其中对驾驶仓的安全撞击测试最为严格,要求座舱侧面必须能承受直径为300毫米,质量为780公斤的钢片以10米/秒的速度以90度的夹角撞击。总质量为780KG的单体壳与支架捆绑,以14米/秒的速度垂直撞向水泥墙时,必须能保证驾驶仓完好无损。

F1引擎

Engine

引擎形式:2.4升V8

引擎排量:2400cc

引擎夹角:90度

气阀结构:每缸四气门

进气方式:自然吸气

驱动方式:中置后驱

引擎质量:不小于95KG

引擎简介

引擎是F1赛车最核心、最昂贵、最机密和最复杂的构成部分。国际汽联为了节约开支、降低动力输出和提高安全,从2006赛季开始改用2.4升V8引擎,不过对于那些没有经济实力,及时过渡的车队,可以继续沿用两年的3.0升V10引擎,但是为了确保竞争公平,必须接受对转速和进气量的限制。

在3.0升V10时代,引擎的最大转速已接近20000转/分,最大功率更是达到了令人汗颜的1000匹(本田在中国站使用的RA005E)。改用2.4升V8后,长度缩短了大约10厘米,动力输出降低20%(初期),油耗降低15%,散热要求也跟着下降。在初期,V8引擎的最大功率在700匹左右(不同厂商的产品有所不同),最高转速在19000转以上,考斯沃斯的CA2006-V8引擎,已经在台架和赛道测试中双双超过20000转/分。 4升V8引擎规则译文(章节编号按照规则原文) 第五章: 引擎 引擎曲轴箱和气缸盖必须用铝合金浇铸或者锻造。整个部件或者部分区域,不允许使用合成材料或者金属模板复合材料。 任何位于引擎内部,主要功能或者次要功能旨在润滑或者冷却的金属机构,必须用基于铁的合金或者铝合金制造,铝合金包括:硅铝合金、铜铝合金、锌铝合金和镁铝合金。 所有的扣件必须用基于钴、铁和镍的合金制造。不允许使用合成材料。 阀座嵌入机构、阀门导轨和任何其他的轴承部件,可以用金属渗透的预制成型技术与其他方法混合制造,但不能用于强化。 方程式汽车赛(F3/)

方程式汽车场地比赛项目之一。使用的赛车是四轮外露的单座位纯跑道用方程式赛车, 外形与一级方程式赛车相类似,但体积较小, 最低重量为455公斤, 配备4汽缸、工作总容积为2公升的自然吸气式汽油发动机,输出功率约170马力。

方程式3000(F3000/Formula 3000)

1.0公升方程式汽车赛。方程式汽车场地比赛项目之一。设有国际大奖赛等比赛。使用的赛车是四轮外露的单座位纯跑道用方程式赛车, 装备8汽缸、工作总容积为3公升的自然吸气式汽油发动机,输出功率约475马力。

雷诺方程式(Formula Renault)

雷诺方程式 2000 是世界上著名及最普及的一种方程式赛车,该项赛事是由法国雷诺集团推广发展起来的,方程式赛车由意大利TATUUS 公司制造,该类单座赛车的马力为 200HP, 最高时速可达到一小时 260 公里。雷诺方程式 2000 赛车的良好性能和价钱的完美结合保证了其在全世界的普及程度,这种 2000 型的赛车每年制造超过 700 辆。雷诺 2000 方程式赛车给全世界的热衷赛车运动的年轻人提供了一个驾驶技能和身体心理状态适应的学习及提高的环境,为他们走向该项运动的顶级赛事 F1 ,成为未来之星做下铺垫。雷诺方程式 2000 赛事从 2000 年起举办至今,短短的四年里,已经成功地把雷克南(迈凯伦车队),马萨(索伯车队)及克莱恩(美洲虎车队)推向 F1 的大舞台。

亚洲方程式(Formula ASIA)

方程式汽车场地比赛项目之一,限在亚洲地区开展。使用的赛车是四轮外露的单座位纯跑道用方程式赛车, 车身规格与方程式相似, 配备1台 福特 4汽缸工作总容积为2公升的自然吸气式汽油发动机, 输出功率约160马力。近年来出现了宝马亚洲方程式,是亚洲比较流行的方程式赛车。

宝马320i(06款)参数

类别 轿车

品牌 华晨宝马

车系 3系

车型 320i

款式 2006

前轮距(mm)/前轮距比 1500/0.82

后轮距(mm)/后轮距比 1513/0.83

外部参数

车顶形式 天窗

车身颜色 雪山白、樱桃红、宝石青、泰坦银、闪晶灰、神秘蓝

车漆 金属漆/普通漆

车门数 4

玻璃类型 隔热玻璃

天窗描述 内藏

遮阳物 有遮阳板

天窗开合方式 电动

车篷开合方式 ---

车篷开合时间

行李架 无

前雨刷器 双雨刷

雨量传感器 有雨量传感器

后雨刷器 无

车体质量

整备质量(kg) 1425

承载质量(kg) 520

车体性能

车体结构 承载式

车厢数量 三厢

车壳材料 钢

底盘保护 底盘整体保护罩

车内尺寸

前排内部高度(mm) 8

前排内部宽度(mm) 1460

前排腿部空间(mm) 860- 1090

前排坐垫长度(mm) 500

后排内部高度(mm) 953

后排内部宽度(mm) 1454

后排腿部空间(mm) 680-950

后排坐垫长度(mm) 480

第三排内部高度(mm) ---

第三排腿部空间(mm) ---

前座中央扶手 有

后坐中央扶手 有

后备厢开口宽度/离地高度(mm) 1020/700

车内装饰

内饰材料 PVC

内饰贴面材料 胡桃木

车内座椅

座位数(个) 5

座椅表面材料 真皮

后排座椅调节方向 0

前排座椅调节方向 6方向->前排

座椅调节形式 电动

后座头枕 有

前后排座椅加热 有

前后排座椅腰部支撑调节 无

座椅调节记忆位置组数 2

座椅/通风功能 无

运动座椅 无

后排座放倒比例(%) 不能放倒

行李舱容积 460

行李舱开合方式 遥控->上掀

行李舱灯 有

动力性能

最高车速(km/h) 215

100kmh加速时间(s) 9.7

电子限速 无

定速巡航系统 有

敞篷风阻系数(Cd) ---

风阻系数(Cd) 0.30

功率 110(150)/6200

最大扭矩 200/3600

最高转速 6500

压缩比 10.5

升功率(Kw/l) 55.14

比功率(Kw/Kg) 0.0772

驱动方式 前置后驱

排气量 1.995

发动机

发动机厂家型号 N46B20CB

发动机特有技术 Valvetronic (电子气门技术),DME数字式电子伺控系统,双凸轮轴可变气门正时控制系统 (Bi-VANOS)

缸体材料 全铝

缸盖材料 全铝

缸数(个) 4

每缸气门数(个) 4

增压方式 无

燃油供给方式 多点电喷

气缸排列形式 直列

每列汽缸凸轮轴数量 双

凸轮轴位置 顶置

可变气门正时 无级可调

可变气门行程 无级可调

传动性能

变速器形式 手自一体

挡杆位置 地排

挡位数(个) 6

主减速比 3.91

分动器类型 ---

中央差速器锁 无

前桥差速器锁 无

后桥差速器锁 无

环保性能

环保标准 欧IV

三元催化 有

通过性能

最小转弯直径(m) 11.0

最小离地间隙(mm) 120

接近角 16.8

离去角 16.4

最大爬坡度(%) 待查

最大涉水深度(m) 待查

燃油油耗

燃油类型,标号 #及以上无铅汽油

油箱容积 60

油耗 综合->7.9

内部仪表

仪表板显示形式 数字/模拟

仪表板背光颜色 橘红色

仪表板灯亮度可调 可调

方向盘表面材料 真皮

方向盘调节形式 电动

方向盘调节方向 4方向

多功能方向盘 有

转向性能

动力助力转向 有

助力转向调节 有

转向机类型 齿轮齿条式

悬架系统

前悬挂形式 麦弗逊独立悬架

后悬挂形式 多连杆独立悬架

减振器类型 液压

车身高度可调 不可调

前悬挂弹性元件 螺旋弹簧

后悬挂弹性元件 螺旋弹簧

制动性能

制动距离(m) 100km/h-0->38.6

ABS刹车防抱死系统 有

驱动防滑系统 有

电子稳定程序 有

制动力自动分配 有

电子差速制动 有

循迹控制系统 有

主动车身控制系统 无

其它 CBC (转弯防滑系统);DSCIII (第三代动态稳定控制系统);ASC DTC (自动稳定及牵引力控制)

前制动器类型 盘式

后制动器类型 盘式

手刹位置 前排座椅中间

轮胎轮毂

前轮胎规格 205/55R16

后轮胎规格 205/55R16

轮辋材料 铝

轮辋规格 7J*16

备胎规格及数量 无->0

备胎放置位置 ---

胎压监测装置 有

零压续行 有

外部灯光

前照灯类型 卤素

前照灯照射高度车内调节 有

高位刹车灯 有

前雾灯 有

前灯自动清洗功能 无

车外灯光关闭延迟 无

安全防护

气囊气帘个数 6

驾驶位气囊 有

副驾驶位气囊 有

副气囊锁止功能 有

侧气帘(气囊) 有

安全带预收紧功能 有

安全带位置可调 不可调

后排安全带 有

噪声噪音

怠速噪音dB(A) 41

等速噪音dB(A) 100km/h->71

舒适性能

车内中控锁 有

前电动窗 有

前电动窗防夹手功能 有

后电动窗 有

后电动窗防夹手功能 有

后视镜电动调节 有

后视镜加热功能 无

后视镜折叠功能 有

后视镜防眩目功能 有

后挡风加热功能 有

后窗遮阳帘 有

杯架数(个) 5

遥控油箱盖 有

车外温度显示 有

车内阅读灯 有

车内灯光关闭延时 有

后门开启方式 手动->侧开

车载冰箱 无

智能设备

GPS导航系统 无

泊车系统 雷达

车载罗盘 无

车载电话 无

无线上网功能 无

防盗系统 有

空调系统

空调系统 有

压缩机数量(个) 1

温区个数(个) 2

空调控制方式 自动

后座空调 有

外循环空气过滤器 有